Nilpotent-by-finite groups with isomorphic finite quotients

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quotients of adic spaces by finite groups

We prove that if X is an analytic adic space with an action of a finite group G, a categorical adic space quotient X/G exists under a mild hypothesis, in analogy with a classical result for schemes. We also show that if X is perfectoid, then X/G is perfectoid in many cases.

متن کامل

Determining Fuchsian groups by their finite quotients

Let C(Γ) be the set of isomorphism classes of the finite groups that are quotients (homomorphic images) of Γ. We investigate the extent to which C(Γ) determines Γ when Γ is a group of geometric interest. If Γ1 is a lattice in PSL(2,R) and Γ2 is a lattice in any connected Lie group, then C(Γ1) = C(Γ2) implies that Γ1 ∼= Γ2. If F is a free group and Γ is a right-angled Artin group or a residually...

متن کامل

Torus quotients as global quotients by finite groups

This article is motivated by the following local-to-global question: is every variety with tame quotient singularities globally the quotient of a smooth variety by a finite group? We show that this question has a positive answer for all quasi-projective varieties which are expressible as a quotient of a smooth variety by a split torus (e.g. simplicial toric varieties). Although simplicial toric...

متن کامل

NILPOTENT p-LOCAL FINITE GROUPS

In this paper we provide characterizations of p-nilpotency for fusion systems and p-local finite groups that are inspired by known result for finite groups. In particular, we generalize criteria by Atiyah, Brunetti, Frobenius, Quillen, Stammbach and Tate.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1973

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-1973-0384940-6